Math 20550 - Summer 2016

Fundamental Theorem of Line Integrals and Green's Theorem July 11, 2016

Problem 1. Evaluate $\int_C (x^2 + y^2) dx + 2xy \ dy$ where C is given by

(a)
$$x = \cos t$$
, $y = \sin t$, $0 \le t \le \pi$

(b)
$$x = \cos t, \ y = \sin t, \ 0 \le t \le 2\pi$$

Problem 2. Is the vector field $\mathbf{F} = \langle y, -x \rangle$ conservative? If so, find a potential function.

Problem 3. Compute the line integral

$$\int_C (y^2z + 2xz^2)dx + 2xyz \ dy + (xy^2 + 2x^2z)dz$$

where C is the path given by $\mathbf{r}(t) = \langle \sqrt{t}, t+1, t^2 \rangle$, $0 \le t \le 1$.

Problem 4. Find the work done by the force field $\mathbf{F}(x,y) = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}$ in moving a particle from the point P = (1,1) to the point Q = (2,4).

Problem 5. Is there a vector field G such that

curl
$$\mathbf{G} = \langle xyz, -y^2z, yz^2 \rangle$$
?

Problem 6. Compute the line integral $\oint_C xy \ dx + x^2y^3 \ dy$ where C is the triangle with vertices (0,0), (1,0), (1,2).

Problem 7. Let D be the region between the curves $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. Let C be the boundary of the region D.

- (a) What does it mean for C to be positively oriented? Sketch C with its positive orientation.
- (b) Compute the integral $\int_C (1-y^3)dx + (x^3+e^{y^2})dy$ where C has positive orientation.

Problem 8. Use Green's Theorem to find the area under one arch of the cycloid $x = t - \sin t$, $y = 1 - \cos t$.

Problem 9. Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle xy, y^2 \rangle$ and C consists of the line segment from (0,0) to (0,4) and the piece of the parabola $y=4-x^2$ from (0,4) to (1,3), and the line segment from (1,3) to (1,0).

Problem 10. Suppose we have two objects of masses m and M. Assume the mass M is at the origin. The force due to gravity at the point (x, y, z) is given by

$$\mathbf{F}(\mathbf{r}) = -\frac{mMG\mathbf{r}}{|\mathbf{r}|^3},$$

where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Suppose that P_1 is a distance d_1 from the origin and P_2 is a distance d_2 from the origin.

- (a) Find the work done by \mathbf{F} in moving the mass m from P_1 to P_2 in terms of d_1 and d_2 .
- (b) Find the work done by the gravitational field as the Earth moves from aphelion (its maximum distance of $1.52 \cdot 10^8 \, \mathrm{km}$) to perihelion (its minimum distance of $1.47 \cdot 10^8 \, \mathrm{km}$). You can leave your answers in terms of m, M, and G, or you can use $m = 5.97 \cdot 10^{24} \, \mathrm{kg}$, $M = 1.99 \cdot 10^{30} \, \mathrm{kg}$, and $G = 6.67 \cdot 10^{-11} \, N \cdot m^2 / \mathrm{kg}^2$.